Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Architecture of the integument in lower teleostomes: Functional morphology and evolutionary implications

Identifieur interne : 001375 ( Main/Exploration ); précédent : 001374; suivant : 001376

Architecture of the integument in lower teleostomes: Functional morphology and evolutionary implications

Auteurs : Sven Gemballa [Allemagne] ; Peter Bartsch [Allemagne]

Source :

RBID : ISTEX:37F59277A6527FF146C3AC48BDE2C9E1B7863AA2

English descriptors

Abstract

A bony ganoid squamation is the plesiomorphic type in actinopterygians. During evolution, it was replaced by weak and more flexible elasmoid scales. We provide a comparative description of the integument of “ganoid” fishes and “nonganoid” fishes that considers all dermal components of mechanical significance (stratum compactum, morphology of ganoid scales, and their regional differences) in order to develop a functional understanding of the ganoid integument as a whole. Data were obtained for the extant “ganoid” fishes (Polypteridae and Lepisosteidae) and for closely related “lower” actinopterygians (Acipenser ruthenus, Amia calva) and “lower” sarcopterygians (Latimeria chalumnae, Neoceratodus forsteri). Body curvatures during steady undulatory locomotion, sharp turns, prey‐strikes, and fast starts in “ganoid” fishes were measured from videotapes. Extreme body curvatures as measured in anesthetized specimens are never reached during steady swimming, but are sometimes closely approached in certain situations (sharp turns, prey‐strike). During extreme body curvatures we measured high values of lateral strain on the convex and on the concave side of the body. Scale overlap changes considerably (66–127% in Lepisosteus, 42–140% in Polypterus). The ganoid squamation forms a protective coat, but at the same time it permits extreme body curvatures. This is reflected in characteristic morphological features of the ganoid scales, such as an anterior process, concave anterior margin, and peg‐and‐socket articulation. These characters are most pronounced in the anterior body region, where maximum changes in scale overlap are required. The anterior processes and anterior concave margin, together with the attached stratum compactum, guide movements in a horizontal plane during bending. Displacements of scales relative to each other are possible for scales of different scale rows, but are impeded in scales of the same scale row due to the peg‐and‐socket articulation. Furthermore, ganoid scale rows, fibers of collagen layers of the stratum compactum, and the lateral myoseptal structures follow the same oblique orientation, which is needed to achieve extreme body curvatures. There is no evidence that body curvatures are limited by the ganoid squamation in Polypterus or Lepisosteus to any larger extent than by a type of integument devoid of ganoid scales in teleostomes of similar body shape. Our results essentially contradict former functional interpretations: 1) Ganoid scales do not especially limit body curvature during steady undulatory locomotion; 2) They do not act as torsion‐resisting devices, but may be able to damp torsion together with the stratum compactum and internal body pressure. J. Morphol. 253:290–309, 2002. © 2002 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/jmor.10007


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Architecture of the integument in lower teleostomes: Functional morphology and evolutionary implications</title>
<author>
<name sortKey="Gemballa, Sven" sort="Gemballa, Sven" uniqKey="Gemballa S" first="Sven" last="Gemballa">Sven Gemballa</name>
</author>
<author>
<name sortKey="Bartsch, Peter" sort="Bartsch, Peter" uniqKey="Bartsch P" first="Peter" last="Bartsch">Peter Bartsch</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:37F59277A6527FF146C3AC48BDE2C9E1B7863AA2</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/jmor.10007</idno>
<idno type="url">https://api.istex.fr/document/37F59277A6527FF146C3AC48BDE2C9E1B7863AA2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001443</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001443</idno>
<idno type="wicri:Area/Istex/Curation">001441</idno>
<idno type="wicri:Area/Istex/Checkpoint">000B63</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000B63</idno>
<idno type="wicri:doubleKey">0362-2525:2002:Gemballa S:architecture:of:the</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:12125067</idno>
<idno type="wicri:Area/PubMed/Corpus">000606</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000606</idno>
<idno type="wicri:Area/PubMed/Curation">000606</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000606</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000606</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000606</idno>
<idno type="wicri:Area/Ncbi/Merge">000059</idno>
<idno type="wicri:Area/Ncbi/Curation">000059</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000059</idno>
<idno type="wicri:doubleKey">0362-2525:2002:Gemballa S:architecture:of:the</idno>
<idno type="wicri:Area/Main/Merge">001435</idno>
<idno type="wicri:Area/Main/Curation">001375</idno>
<idno type="wicri:Area/Main/Exploration">001375</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Architecture of the integument in lower teleostomes: Functional morphology and evolutionary implications</title>
<author>
<name sortKey="Gemballa, Sven" sort="Gemballa, Sven" uniqKey="Gemballa S" first="Sven" last="Gemballa">Sven Gemballa</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Zoologisches Institut, Spezielle Zoologie, Universität Tübingen, D‐72076 Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Zoologisches Institut, Spezielle Zoologie, Universität Tübingen, D‐72076 Tübingen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Tübingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bartsch, Peter" sort="Bartsch, Peter" uniqKey="Bartsch P" first="Peter" last="Bartsch">Peter Bartsch</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Museum für Naturkunde der Humboldt‐Universität zu Berlin, Institut für Systematische Zoologie, D‐10115 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Morphology</title>
<title level="j" type="abbrev">J. Morphol.</title>
<idno type="ISSN">0362-2525</idno>
<idno type="eISSN">1097-4687</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2002-09">2002-09</date>
<biblScope unit="volume">253</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="290">290</biblScope>
<biblScope unit="page" to="309">309</biblScope>
</imprint>
<idno type="ISSN">0362-2525</idno>
</series>
<idno type="istex">37F59277A6527FF146C3AC48BDE2C9E1B7863AA2</idno>
<idno type="DOI">10.1002/jmor.10007</idno>
<idno type="ArticleID">JMOR10007</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0362-2525</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Animals</term>
<term>Biological Evolution</term>
<term>Fishes (anatomy & histology)</term>
<term>Fishes (physiology)</term>
<term>Lepisosteidae</term>
<term>Mechanoreceptors (anatomy & histology)</term>
<term>Microscopy, Electron, Scanning</term>
<term>Motor Activity</term>
<term>Polypteridae</term>
<term>Ribs (anatomy & histology)</term>
<term>Skin (anatomy & histology)</term>
<term>Skin (ultrastructure)</term>
<term>Swimming</term>
<term>body flexibility</term>
<term>ganoid squamation</term>
<term>stratum compactum</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Fishes</term>
<term>Mechanoreceptors</term>
<term>Ribs</term>
<term>Skin</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Skin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Animals</term>
<term>Biological Evolution</term>
<term>Microscopy, Electron, Scanning</term>
<term>Motor Activity</term>
<term>Swimming</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A bony ganoid squamation is the plesiomorphic type in actinopterygians. During evolution, it was replaced by weak and more flexible elasmoid scales. We provide a comparative description of the integument of “ganoid” fishes and “nonganoid” fishes that considers all dermal components of mechanical significance (stratum compactum, morphology of ganoid scales, and their regional differences) in order to develop a functional understanding of the ganoid integument as a whole. Data were obtained for the extant “ganoid” fishes (Polypteridae and Lepisosteidae) and for closely related “lower” actinopterygians (Acipenser ruthenus, Amia calva) and “lower” sarcopterygians (Latimeria chalumnae, Neoceratodus forsteri). Body curvatures during steady undulatory locomotion, sharp turns, prey‐strikes, and fast starts in “ganoid” fishes were measured from videotapes. Extreme body curvatures as measured in anesthetized specimens are never reached during steady swimming, but are sometimes closely approached in certain situations (sharp turns, prey‐strike). During extreme body curvatures we measured high values of lateral strain on the convex and on the concave side of the body. Scale overlap changes considerably (66–127% in Lepisosteus, 42–140% in Polypterus). The ganoid squamation forms a protective coat, but at the same time it permits extreme body curvatures. This is reflected in characteristic morphological features of the ganoid scales, such as an anterior process, concave anterior margin, and peg‐and‐socket articulation. These characters are most pronounced in the anterior body region, where maximum changes in scale overlap are required. The anterior processes and anterior concave margin, together with the attached stratum compactum, guide movements in a horizontal plane during bending. Displacements of scales relative to each other are possible for scales of different scale rows, but are impeded in scales of the same scale row due to the peg‐and‐socket articulation. Furthermore, ganoid scale rows, fibers of collagen layers of the stratum compactum, and the lateral myoseptal structures follow the same oblique orientation, which is needed to achieve extreme body curvatures. There is no evidence that body curvatures are limited by the ganoid squamation in Polypterus or Lepisosteus to any larger extent than by a type of integument devoid of ganoid scales in teleostomes of similar body shape. Our results essentially contradict former functional interpretations: 1) Ganoid scales do not especially limit body curvature during steady undulatory locomotion; 2) They do not act as torsion‐resisting devices, but may be able to damp torsion together with the stratum compactum and internal body pressure. J. Morphol. 253:290–309, 2002. © 2002 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>Berlin</li>
<li>District de Tübingen</li>
</region>
<settlement>
<li>Berlin</li>
<li>Tübingen</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Gemballa, Sven" sort="Gemballa, Sven" uniqKey="Gemballa S" first="Sven" last="Gemballa">Sven Gemballa</name>
</region>
<name sortKey="Bartsch, Peter" sort="Bartsch, Peter" uniqKey="Bartsch P" first="Peter" last="Bartsch">Peter Bartsch</name>
<name sortKey="Gemballa, Sven" sort="Gemballa, Sven" uniqKey="Gemballa S" first="Sven" last="Gemballa">Sven Gemballa</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:37F59277A6527FF146C3AC48BDE2C9E1B7863AA2
   |texte=   Architecture of the integument in lower teleostomes: Functional morphology and evolutionary implications
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024